
CS155/254: Probabilistic Methods in
Computer Science

Chapter 14.1: Sample Complexity - Statistical Learning Theory

1 / 24

Statistical	Learning	–
Learning	From	Examples

• We	want	to	estimate	the	working	temperature	range	of	an	
iPhone.
– We	could	study	the	physics	and	chemistry	that	affect	the	

performance	of	the	phone	– too	hard
– We	could	sample	temperatures	in	[-100C,+100C]	and	check	if	

the	iPhone	works	in	each	of	these	temperatures
– We	could	sample	users’	iPhones	for	failures/temperature

• How	many	samples	do	we	need?
• How	good	is	the	result?

-100C +100Ca b

2 / 24

Sample Complexity and Uniform Convergence

Given a function f , with values in a bounded domain (say
f ∈ [0, 1]), and a sample x1, . . . , xn from a distribution D, we can
estimate ED[f] using Hoeffding’s inequality:

Pr(|1
n

n∑
i=1

f (xi)− E [f]| ≥ ϵ) ≤ 2e−2nϵ2 = δ,

or

Pr

(
1

n

n∑
i=1

f (xi)−
√

δ/2

2n
≤ E [f] ≤ 1

n

n∑
i=1

f (xi) +

√
δ/2

2n

)
≥ 1− δ

We can estimate the probability of an event A using
PrD(A) = ED[1x∈A].

We have a well understood relation between ϵ, δ and n,

ϵ ≈
√

δ

n
.

3 / 24

Sample Complexity and Uniform Convergence

For a single function f , f ∈ [0, 1], and a sample x1, . . . , xn from a
distribution D,

Pr(|1
n

n∑
i=1

f (xi)− E [f]| ≥ ϵ) ≤ 2e−2nϵ2 = δ,

or

Pr

(
1

n

n∑
i=1

f (xi)−
√

δ/2

2n
≤ E [f] ≤ 1

n

n∑
i=1

f (xi) +

√
δ/2

2n

)
≥ 1− δ

We have a well understood relation between ϵ, δ and n, ϵ ≈
√

δ
n .

How does this relation change when we use the sample
x1, . . . , xn to estimate the expectations of m different
functions?

With a union bound we get ϵ ≈
√

δm
n . Can we do better?

4 / 24

Sample Complexity, Uniform Convergence and
Statistical Learning

We have a distribution D on X , and a collection of functions
(hypothesis) F : X → Y.

We want to identify a function f ∈ F that best models the relation
between X and Y with respect to a loss function ℓ(f (x), y) (the
penalty for returning f (x) when the ”correct” value is y).

Empirical risk minimization:
Given a sample (training set) (x1, y1), . . . , (xn, yn),
approximate f ∗ = argminf ∈F E [ℓ(x , f (x))],
using f̃ ∗ = argminf ∈F

1
n

∑n
i=1 ℓ(x , f (xi)).

Uniform convergence: The sample needs to simultaneously
estimate the expected loss of all the functions in F . We need to
bound

Pr(sup
f ∈F

|
n∑

i=1

f (xi)− E [f]| ≥ ϵ)

5 / 24

Statistical	Learning	–
Learning	From	Examples

• We	want	to	estimate	the	working	temperature	range	of	an	
iPhone.
– We	could	study	the	physics	and	chemistry	that	affect	the	

performance	of	the	phone	– too	hard
– We	could	sample	temperatures	in	[-100C,+100C]	and	check	if	

the	iPhone	works	in	each	of	these	temperatures
– We	could	sample	users’	iPhones	for	failures/temperature

• How	many	samples	do	we	need?
• How	good	is	the	result?

-100C +100Ca b

6 / 24

Learning an Interval From Examples

• The domain is [A,B] ⊂ (−∞,+∞). There is an unknown
distribution D on [A,B]

• There is an unknown classification of the domain to an
interval of points in class In, the rest are in class Out.

• The algorithm gets n random labeled examples, (point, class),
from the distribution D (the ”training set”).

• The algorithm chooses a rule r = [x , y] based on the
examples.

• We use this rule to decide on unlabeled points drawn from D
(the ”test set”).

• Let r∗ = [a, b] be the correct rule.

• Let ∆(r , r∗) = ([a, b]− [x , y]) ∪ ([x , y]− [a, b])

• We are wrong only on examples in ∆(r , r∗).

7 / 24

What’s the probability that we are wrong?

• The correct classification is r∗ = [a, b].

• The algorithm chose r = [x , y].

• The algorithm is wrong only on examples in ∆(r , r∗).

• The probability that the algorithm is wrong is PrD(∆(r , r∗)).

• For fixed ϵ and δ we want:

Prob(select r such that Pr(∆(r , r∗)) ≥ ϵ) ≤ δ

Two probabilities:

1 ϵ - the probability that the rule gives a wrong answer.

2 δ - the probability that the algorithm fails to generate a rule
with error ≤ ϵ.

Sample Complexity: the minimum number of labeled samples to
satisfy both probabilities.

8 / 24

Learning	
 an	
 Interval	

•  If	
 the	
 classifica2on	
 error	
 is	
 ≥	
 ε	
 then	
 the	
 sample	

missed	
 at	
 least	
 one	
 of	
 the	
 the	
 intervals	
 [a,a’]	

or	
 [b’,b]	
 each	
 of	
 probability	
 ≥	
 ε/2	

A	
 B	
 a	
 b	

x	
 y	

ε/2	

a’	

Each	
 sample	
 excludes	
 many	
 possible	
 intervals.	

The	
 union	
 bound	
 sums	
 over	
 overlapping	
 hypothesis.	

Need	
 beIer	
 characteriza2on	
 of	
 concept's	
 complexity!	

	

ε/2	
 	

b’	

9 / 24

Theorem

There is a learning algorithm that given a sample from D of size
m = 2

ϵ ln
2
δ , with probability 1− δ, returns a classification rule

(interval) [x , y] that is correct with probability 1− ϵ.

Proof.

Algorithm: Choose the smallest interval [x , y] that includes all the
”In” sample points.

• Clearly a ≤ x < y ≤ b, and the algorithm can only err in
classifying ”In” points as ”Out” points.

• Fix a < a′ and b′ < b such that Pr([a, a′]) = ϵ/2 and
Pr([b, b′]) = ϵ/2.

• If the probability of error when using the classification [x , y] is
≥ ϵ then either a′ ≤ x or y ≤ b′ or both.

• The probability that the sample of size m = 2
ϵ ln

2
δ did not

intersect with one of these intervals is bounded by

2(1− ϵ

2
)m ≤ e−

ϵm
2
+ln 2 = e−

ϵ
2
2
ϵ
ln 2

δ
+ln 2 = δ

10 / 24

Learning a Binary Classifier

• An unknown probability distribution D on a domain U
• An unknown correct classification – a partition c of U to In

and Out sets
• Input:

• Concept class C – a collection of possible classification rules
(partitions of U).

• A training set {(xi , c(xi)) | i = 1, . . . ,m}, where x1, . . . , xm are
sampled from D.

• Goal: With probability 1− δ the algorithm generates a good
classifier.

• A classifier is good if the probability that it errs on an item
generated from D is ≤ opt(C) + ϵ, where opt(C) is the error
probability of the best classifier in C.

• Realizable case: c ∈ C, Opt(C) = 0.

• Unrealizable case: c ̸∈ C, Opt(C) > 0.

11 / 24

Learning	a	Binary	Classifier	
•  Out	and	In	items,	and	a	concept	class	C	of	
possible	classifica;on	rules	

12 / 24

When does the sample specify a good rule?
The realizable case

• The realizable case - the correct classification c ∈ C.
• For any h ∈ C let ∆(c , h) be the set of items on which the

two classifiers differ: ∆(c, h) = {x ∈ U | h(x) ̸= c(x)}
• Algorithm: choose h∗ ∈ C that agrees with all the training set

(there must be at least one).

• If the sample (training set) intersects every set in

{∆(c , h) | Pr(∆(c , h)) ≥ ϵ},

then
Pr(∆(c , h∗)) ≤ ϵ.

13 / 24

Learning	a	Binary	Classifier	
•  Red	and	blue	items,	possible	classifica9on	
rules,	and	the	sample	items	

14 / 24

When does the sample identify a good rule?
The unrealizable (agnostic) case

• The unrealizable case - c may not be in C.
• For any h ∈ C, let ∆(c, h) be the set of items on which the

two classifiers differ: ∆(c, h) = {x ∈ U | h(x) ̸= c(x)}
• For the training set {(xi , c(xi)) | i = 1, . . . ,m}, let

P̃r(∆(c , h)) =
1

m

m∑
i=1

1h(xi)̸=c(xi)

• Algorithm: choose h∗ = argminh∈C P̃r(∆(c , h)).
• If for every set ∆(c , h),

|Pr(∆(c, h))− P̃r(∆(c , h))| ≤ ϵ,

then
Pr(∆(c , h∗)) ≤ opt(C) + 2ϵ.

where opt(C) is the error probability of the best classifier in C.
15 / 24

If for every set ∆(c, h),

|Pr(∆(c , h))− P̃r(∆(c , h))| ≤ ϵ,

then
Pr(∆(c , h∗)) ≤ opt(C) + 2ϵ.

where opt(C) is the error probability of the best classifier in C.
Let h̄ be the best classifier in C. Since the algorithm chose h∗,

P̃r(∆(c , h∗)) ≤ P̃r(∆(c , h̄)).

Thus,

Pr(∆(c , h∗))− opt(C) ≤ P̃r(∆(c , h∗))− opt(C) + ϵ

≤ P̃r(∆(c , h̄))− opt(C) + ϵ ≤ 2ϵ

16 / 24

Detection vs. Estimation
• Input:

• Concept class C – a collection of possible classification rules
(partitions of U).

• A training set {(xi , c(xi)) | i = 1, . . . ,m}, where x1, . . . , xm are
sampled from D.

• For any h ∈ C, let ∆(c , h) be the set of items on which the
two classifiers differ: ∆(c , h) = {x ∈ U | h(x) ̸= c(x)}

• For the realizable case we need a training set (sample) that
with probability 1− δ intersects every set in

{∆(c , h) | Pr(∆(c , h)) ≥ ϵ} (ϵ-net)

• For the unrealizable case we need a training set that with
probability 1− δ estimates, within additive error ϵ, every set in

∆(c , h) = {x ∈ U | h(x) ̸= c(x)} (ϵ-sample).

17 / 24

Uniform Convergence Sets

Given a collection R of sets in a universe X , under what conditions
a finite sample N from an arbitrary distribution D over X , satisfies
with probability 1− δ,

1

∀r ∈ R, Pr
D
(r) ≥ ϵ ⇒ r ∩ N ̸= ∅ (ϵ-net)

2 for any r ∈ R,∣∣∣∣PrD (r)− |N ∩ r |
|N|

∣∣∣∣ ≤ ε (ϵ-sample)

18 / 24

Learnability - Uniform Convergence

Theorem

In the realizable case, any concept class C can be learned with
m = 1

ϵ (ln |C|+ ln 1
δ) samples.

Proof.

We need a sample that intersects every set in the family of sets

{∆(c , c ′) | Pr(∆(c , c ′)) ≥ ϵ}.

There are at most |C| such sets, and the probability that a sample
is chosen inside a set is ≥ ϵ.
The probability that m random samples did not intersect with at
least one of the sets is bounded by

|C|(1− ϵ)m ≤ |C|e−ϵm ≤ |C|e−(ln |C|+ln 1
δ
) ≤ δ.

19 / 24

How	
 Good	
 is	
 this	
 Bound?	

•  Assume	
 that	
 we	
 want	
 to	
 es3mate	
 the	
 working	

temperature	
 range	
 of	
 an	
 iPhone.	

•  We	
 sample	
 temperatures	
 in	
 [-­‐100C,+100C]	

and	
 check	
 if	
 the	
 iPhone	
 works	
 in	
 each	
 of	
 these	

temperatures.	

-­‐100C	
 +100C	
 a	
 b	

20 / 24

Learning an Interval

• A distribution D is defined on universe that is an interval
[A,B].

• The true classification rule is defined by a sub-interval
[a, b] ⊆ [A,B].

• The concept class C is the collection of all intervals,

C = {[c , d] | [c , d] ⊆ [A,B]}

Theorem

There is a learning algorithm that given a sample from D of size
m = 2

ϵ ln
2
δ , with probability 1− δ, returns a classification rule

(interval) [x , y] that is correct with probability 1− ϵ.

Note that the sample size is independent of the size of the concept
class |C|, which is infinite.

21 / 24

• The union bound is far too loose for our applications. It sums
over overlapping hypothesis.

• Each sample excludes many possible intervals.

• Need better characterization of concept’s complexity!

22 / 24

Probably Approximately Correct Learning
(PAC Learning)

• The goal is to learn a concept (hypothesis) from a pre-defined
concept class. (An interval, a rectangle, a k-CNF boolean
formula, etc.)

• There is an unknown distribution D on input instances.

• Correctness of the algorithm is measured with respect to the
distribution D.

• The goal: a polynomial time (and number of samples)
algorithm that with probability 1− δ computes an hypothesis
of the target concept that is correct (on each instance) with
probability 1− ϵ.

23 / 24

Two fundamental questions:

• What concept classes are PAC-learnable with a given number
of training (random) examples?

• What concept class are efficiently learnable (in polynomial
time)?

A complete (and beautiful) characterization for the first question,
not very satisfying answer for the second one.

Some Examples:

• Efficiently PAC learnable: Interval in R, rectangular in R2,
disjunction of up to n variables, 3-CNF formula,...

• PAC learnable, but not in polynomial time (unless P = NP):
DNF formula, finite automata, ...

• Not PAC learnable: Convex body in R2,
{sin(hx) | 0 ≤ h ≤ π} ,...

24 / 24

