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Statistical Learning —
Learning From Examples

We want to estimate the working temperature range of an
iPhone.

— We could study the physics and chemistry that affect the
performance of the phone —too hard

— We could sample temperatures in [-100C,+100C] and check if
the iPhone works in each of these temperatures

— We could sample users’ iPhones for failures/temperature
How many samples do we need?
How good is the result?

-100C a b
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Sample Complexity and Uniform Convergence

Given a function f, with values in a bounded domain (say
f €10,1]), and a sample xi, ..., x, from a distribution D, we can
estimate Ep[f]| using Hoeffding's inequality:

1« 2
Pr(|= Y f(x;) — E[f]| > €) < 272" =,
r(!ng (xi) — E[f]] =€) < 2e ,
or

1< 5/ 5/2 )
Pr| = f(x;) — < E[f] < f(x)+ >1-9
(s o s S/

We can estimate the probability of an event A using

Prp(A) = Ep[lxecal.

We have a well understood relation between ¢, § and n,
1)

€~ —.

n
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Sample Complexity and Uniform Convergence

For a single function f, f € [0,1], and a sample x1, ..., x, from a
distribution D,

1 n
Pr(I= " F(x) — EIfll = €) < 2e7 =5,
i=1

Pr(iZf(xi)\/T<E[f] Z’[(Xi)+\/52/n2>215
i=1 i=1

We have a well understood relation between ¢, § and n, ¢ = \/g.

How does this relation change when we use the sample
x1,...,X, to estimate the expectations of m different
functions?

With a union bound we get € ~ "T’" Can we do better?
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Sample Complexity, Uniform Convergence and
Statistical Learning

We have a distribution D on X, and a collection of functions
(hypothesis) F : X — V.

We want to identify a function f € F that best models the relation
between X and ) with respect to a loss function /(f(x), y) (the
penalty for returning f(x) when the " correct” value is y).

Empirical risk minimization:

Given a sample (training set) (x1,y1), .., (Xn, ¥n),
approximate f* = arg minger E[((x, f(x))]
using £ = argminger 2 30 U(x, £(x;)).
Uniform convergence: The sample needs to simultaneously

estimate the expected loss of all the functions in 7. We need to
bound

)

Pr(;z;lﬁ"(w) — E[f][ =€)
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Statistical Learning —
Learning From Examples

We want to estimate the working temperature range of an
iPhone.

— We could study the physics and chemistry that affect the
performance of the phone —too hard

— We could sample temperatures in [-100C,+100C] and check if
the iPhone works in each of these temperatures

— We could sample users’ iPhones for failures/temperature
How many samples do we need?
How good is the result?
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Learning an Interval From Examples

The domain is [A, B] C (—o0, +00). There is an unknown
distribution D on [A, B]

There is an unknown classification of the domain to an
interval of points in class /n, the rest are in class Out.

The algorithm gets n random labeled examples, (point, class),
from the distribution D (the "training set”).

The algorithm chooses a rule r = [x, y] based on the
examples.

We use this rule to decide on unlabeled points drawn from D
(the "test set”).

Let r* = [a, b] be the correct rule.
Let A(r7 I’*) = ([aa b] - [X,)/]) U ([X'y] - [3, b])
We are wrong only on examples in A(r, r*).
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What's the probability that we are wrong?

The correct classification is r* = [a, b].

The algorithm chose r = [x, y].

The algorithm is wrong only on examples in A(r, r*).
The probability that the algorithm is wrong is Prp(A(r, r*)).

For fixed ¢ and § we want:

Prob(select r such that Pr(A(r,r*)) >¢€) <¢

Two probabilities:
@ c - the probability that the rule gives a wrong answer.

® 0 - the probability that the algorithm fails to generate a rule
with error < e.

Sample Complexity: the minimum number of labeled samples to
satisfy both probabilities.
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Learning an Interval

* If the classification error is 2 € then the sample
missed at least one of the the intervals [a,a’]
or [b’,b] each of probability > /2

Each sample excludes many possible intervals.
The union bound sums over overlapping hypothesis.
Need better characterization of concept's complexity!
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There is a learning algorithm that given a sample from D of size
m = 2 In 2 5, with probability 1 — 0, returns a classification rule
( interval ) [x, y] that is correct with probability 1 — ¢.

Proof

Algorithm: Choose the smallest interval [x, y| that includes all the
"In" sample points.

® Clearly a < x < y < b, and the algorithm can only err in
classifying "In" points as " Out” points.

® Fix a < @ and b’ < b such that Pr([a, a']) = ¢/2 and
Pr([b, b']) = €/2.

e |f the probability of error when using the classification [x, y| is
> ¢ then either &/ < x or y < b’ or both.

® The probability that the sample of size m = % In % did not
intersect with one of these intervals is bounded by

6 e€em €
2(1 - 7)m < 677+|n2 — e 2 Zln = S+in2 _ =5
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Learning a Binary Classifier

An unknown probability distribution D on a domain U
An unknown correct classification — a partition ¢ of I/ to In
and Out sets
Input:
® Concept class C — a collection of possible classification rules
(partitions of U).
® A training set {(x;,c(x;)) | i =1,...,m}, where xi,...,x,, are
sampled from D.
Goal: With probability 1 — § the algorithm generates a good
classifier.
A classifier is good if the probability that it errs on an item
generated from D is < opt(C) + ¢, where opt(C) is the error
probability of the best classifier in C.
Realizable case: ¢ € C, Opt(C) = 0.

Unrealizable case: ¢ ¢ C, Opt(C) > 0.
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Learning a Binary Classifier

* Qut and In items, and a concept class C of
possible classification rules

12/24



When does the sample specify a good rule?
The realizable case

The realizable case - the correct classification ¢ € C.

For any h € C let A(c, h) be the set of items on which the
two classifiers differ: A(c, h) = {x € U | h(x) # c(x)}
Algorithm: choose h* € C that agrees with all the training set
(there must be at least one).

If the sample (training set) intersects every set in
{A(c,h) | Pr(A(e, ) > e},

then
Pr(A(c, h*)) <e.
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Learning a Binary Classifier

* Red and blue items, possible classification
rules, and the sample items (%)
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When does the sample identify a good rule?
The unrealizable (agnostic) case

The unrealizable case - ¢ may not be in C.
For any h € C, let A(c, h) be the set of items on which the
two classifiers differ: A(c, h) = {x € U | h(x) # c(x)}
For the training set {(x;, c(x;)) | i =1,....m}, let
m

~ 1
Pr(A(c, h)) = - Z 1h0a)c(x)
i=1

Algorithm: choose h* = arg minsce Pr(A(c, h)).
If for every set A(c, h),

|Pr(A(c, b)) — Pr(A(c, h)| <e,

then
Pr(A(c, h*)) < opt(C) + 2e.

where opt(C) is the error probability of the best classifier in C.
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If for every set A(c, h),
|Pr(A(c, h)) — Pr(A(c, h))| < e,

then
Pr(A(c, h*)) < opt(C) + 2e.

where opt(C) is the error probability of the best classifier in C.
Let h be the best classifier in C. Since the algorithm chose h*,

Pr(A(c, h*)) < Pr(A(c, h)).
Thus,

Fjr(A(c, h*)) — opt(C) + €

Pr(A(c, h)) — opt(C) + € < 2¢

Pr(A(c, h*)) — opt(C)

IN A
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Detection vs. Estimation

Input:
® Concept class C — a collection of possible classification rules
(partitions of U).
® A training set {(x;,c(x;)) | i =1,...,m}, where xq,...,x, are
sampled from D.
For any h € C, let A(c, h) be the set of items on which the
two classifiers differ: A(c, h) = {x € U | h(x) # c(x)}
For the realizable case we need a training set (sample) that
with probability 1 — § intersects every set in

{A(c,h) | Pr(A(c,h)) > €} (enet)

For the unrealizable case we need a training set that with
probability 1 — ¢ estimates, within additive error ¢, every set in

A(c,h) ={xe€ U] h(x) # c(x)} (e-sample).
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Uniform Convergence Sets

Given a collection R of sets in a universe X, under what conditions
a finite sample N from an arbitrary distribution D over X, satisfies
with probability 1 — ¢,
o
Vr e R, I;r(r) >e = rNN#0  (enet)

® for any r € R,

IN N
p _
Dr(r) W

(e-sample)
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Learnability - Uniform Convergence

Theorem

In the realizable case, any concept class C can be learned with
m=L1(In|C| +In }) samples.

Proof.

We need a sample that intersects every set in the family of sets

{A(c, ') | Pr(A(c,c)) > e}

There are at most |C| such sets, and the probability that a sample
is chosen inside a set is > e.

The probability that m random samples did not intersect with at
least one of the sets is bounded by

‘C’(l . 6)m < ’C|efem < ’C|ef(|n|C\+|n%) <6

19/24



How Good is this Bound?

* Assume that we want to estimate the working
temperature range of an iPhone.

* We sample temperatures in [-100C,+100C]
and check if the iPhone works in each of these
temperatures.

-100C a b
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Learning an Interval
e A distribution D is defined on universe that is an interval
[A, B].

® The true classification rule is defined by a sub-interval
[a,b] C [A, B].

® The concept class C is the collection of all intervals,

¢ ={lc.d] | [c.d] C [A,B]}

Theorem

There is a learning algorithm that given a sample from D of size
m = % In %, with probability 1 — §, returns a classification rule
(interval) [x, y| that is correct with probability 1 — e.

Note that the sample size is independent of the size of the concept
class |C|, which is infinite.
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® The union bound is far too loose for our applications. It sums
over overlapping hypothesis.

® Each sample excludes many possible intervals.

® Need better characterization of concept’'s complexity!

22/24



Probably Approximately Correct Learning
(PAC Learning)

The goal is to learn a concept (hypothesis) from a pre-defined
concept class. (An interval, a rectangle, a k-CNF boolean
formula, etc.)

There is an unknown distribution D on input instances.

Correctness of the algorithm is measured with respect to the
distribution D.

The goal: a polynomial time (and number of samples)
algorithm that with probability 1 — § computes an hypothesis
of the target concept that is correct (on each instance) with
probability 1 — e.
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Two fundamental questions:

® What concept classes are PAC-learnable with a given number
of training (random) examples?

® What concept class are efficiently learnable (in polynomial
time)?
A complete (and beautiful) characterization for the first question,
not very satisfying answer for the second one.

Some Examples:

e Efficiently PAC learnable: Interval in R, rectangular in R?,
disjunction of up to n variables, 3-CNF formula,...

® PAC learnable, but not in polynomial time (unless P = NP):
DNF formula, finite automata, ...

e Not PAC learnable: Convex body in R2,
{sin(hx) |0 < h <7} ,...
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